18.152 PROBLEM SET 5 SOLUTIONS

DONGHAO WANG

1. Problem 3

Most of students figured this problem out. Some of you made small arithmetic errors in your p-sets. The solution below is based on the work of Eli Garcia

Solution to Problem 3. We rewrite the equation as

$$
\left(\partial_{t}-2 \partial_{x}\right)\left(\partial_{t}+\partial_{x}\right) u=0 .
$$

Let $v=\left(\partial_{x}+\partial_{t}\right) u$, then

$$
\left(\partial_{t}-2 \partial_{x}\right) v(x, t)=0 .
$$

This means that $v(x, t)=G(x+2 t)$ for some smooth function $G: \mathbb{R} \rightarrow$ \mathbb{R}. Note that

$$
\begin{aligned}
u(x, t)-u(x-t, 0) & =\int_{0}^{t} \partial_{s}[u(x-t+s, s)] d s \\
& =\int_{0}^{t} v(x-t+s, s) d s \\
& =\int_{0}^{t} G(x-t+3 s) d s
\end{aligned}
$$

Now consider the boundary condition

$$
\begin{aligned}
u(x, 0) & =g(x) \\
u_{t}(x, 0) & =h(x) \text { when } t=0
\end{aligned}
$$

so

$$
u(x, t)=g(x-t)+\int_{0}^{t} G(x-t+3 s) d s
$$

and

$$
\begin{aligned}
h(x) & =u_{t}(x, 0)=-g^{\prime}(x)+\left.\left[-\int_{0}^{t} G^{\prime}(x-t+3 s) d s+G(x+2 t)\right]\right|_{t=0} \\
& =-g^{\prime}(x)+G(x)
\end{aligned}
$$

Date: May. 6th, 2020.

As a result, $G(x)=g^{\prime}(x)+h(x)$. In conclusion, we have

$$
\begin{aligned}
u(x, t) & =g(x-t)+\int_{0}^{t} g^{\prime}(x-t+3 s)+h(x-t+3 s) d s \\
& =g(x-t)+\frac{1}{3}(g(x+2 t)-g(x-t))+\int_{0}^{t} h(x-t+3 s) d s \\
& =\frac{1}{3} g(x+2 t)+\frac{2}{3} g(x-t)+\frac{1}{3} \int_{x-t}^{x+2 t} h(y) d y .
\end{aligned}
$$

2. Problem 4(b)

Most of you figured this problem out. Here is a side remark: whenever you are asked to find a counter example, try to find the simplest one to make things concrete. The following example is provided by the work of Eli Garcia.

Proof. For simplicity, take $L=1$ and consider the function:

$$
\begin{aligned}
u:[0,1]_{s} \times[0, \infty)_{t} & \rightarrow \mathbb{R} \\
u(x, t) & =\sin (2 \pi x) \sin (2 \pi t) .
\end{aligned}
$$

Then u solves the wave equation with Dirichlet boundary condition:

$$
\begin{aligned}
u_{t t} & =u_{x x}, \quad(x, t) \in[0,1]_{s} \times[0, \infty)_{t}, \\
u(0, t) & =u(1, t)=0 \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =2 \pi \sin (2 \pi x) .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \int_{[0,1]}\left|u_{x}\right|^{2}=4 \pi^{2} \int_{[0,1]}|\cos (2 \pi x) \sin (2 \pi t)|^{2}=2 \pi^{2}|\sin (2 \pi t)|^{2}, \\
& \int_{[0,1]}\left|u_{t}\right|^{2}=4 \pi^{2} \int_{[0,1]}|\sin (2 \pi x) \cos (2 \pi t)|^{2}=2 \pi^{2}|\cos (2 \pi t)|^{2} .
\end{aligned}
$$

So the sum

$$
\int_{[0,1]}\left|u_{t}\right|^{2}+\left|u_{x}\right|^{2}=2 \pi^{2}
$$

is a constant function in t. It oscillates between $\int_{[0,1]}\left|u_{x}\right|^{2}$ and $\int_{[0,1]}\left|u_{t}\right|^{2}$ as the time evolves.

